Configuration management and provisioning are different.

Configuration management tools are used to repeatably and consistently system and application uniformity across clusters of systems at scale. Many of these tools achieve this in three ways: an intuitive command line interface, a lightweight and easily-readable domain-specific language and a comprehensive REST-based API to lower the barrier-to-entry for integrations with other tools. While open-source configuration management tools such as Chef, Ansible, Puppet and Salt have been increasing in popularity over the years, there are also enterprise-grade and regulator-friendly offerings available from vendors such as Dell, Microsoft, HP and BMC.

Configuration management tools are great at keeping a running inventory of existing systems and applications up-to-date. These tools are so good at this, in fact, that many systems administrators and engineers grow tempted into using them to deploy swaths of new systems and configure them shortly thereafter.

I’ve seen this play out at many companies that I’ve worked at. This would usually manifest into an Ansible deployment playbook or a Chef cookbook that eventually became “the” cookbook. The result has always been the same, and if I had to sum this pattern up into a picture, it would look something like this:


Let me explain.

Complexity in simplicity.

One of the darling features of modern configuration management tools is its ability to express complex configuration states in an easily-readable way. This works well for creating an Ansible playbook to configure, say, an nginx instance, but begins to fall apart when trying to, say, provision the instances on which those nginx instances will be hosted and gets really ugly when you attempt to create relationships to deploy application servers with those web servers in trying to stage an environment.

Creating common templates for security groups or firewall templates, instances, storage and the like with configuration management tools outside of what they provide out of the box usually involves writing a lot of boilerplate beforehand. (For example, Ansible has a plugin for staging ebs volumes, but what if you want an EBS resource with specific defaults for certain web or application servers in certain regions? Prepare for a lot of if blocks.) Problems usually also crop up in passing metadata like instance IDs between resources. Because most of the actions done by configuration management tools are idempotent executions, the simple languages they use to to describe configurations don’t natively support variables. Storing metadata and using loops are usually done by breaking out of the DSL and into its underlying language. This breaks readability and makes troubleshooting more complicated.

Provisioning is hard.

Provisioning infrastructure is usually more complicated than configuring the software underlying that infrastructure in two ways.

The first complication arises from the complicated relationships between pieces of infrastructure. Expressing specific environmental nuances of a postgres installation is usually done by way of Chef cookbook attributes and flags. An example of this can be found here. Expressing the three different regions that the databases backing your web app need to be deployed to in a particular environment and the operating system images that those instances need to have will likely require separate layers of attributes: one for image mappings, another for instance sizing and yet another for region mapping. Expressing this in cookbooks gets challenging.

The second complication comes from gathering state. Unless your infrastructure is completely immutable (which is ideal), some state of your infrastructure in the status quo is required before deploying anything. Otherwise, you’ll be in for a surprise or two after you deploy the servers for that environment you thought didn’t exist. Tools like Terraform and AWS CloudFormation keep track of this state to prevent these situations from happening. Chef or Puppet, for example, do not. You can use built-in resources to capture this data and make decisions based on those results, but that puts you back into manipulating their DSLs to do things they weren’t intended to do.

Rollbacks are harder.

chef-provisioning and Ansible provisioning plugins do not support rolling back changes if something fails. This is problematic for three reasons:

  1. Inconsistent environments lead to increased overhead and (usually manual) sysadmin toil. Toil leads to technical debt, and debt leads to slower releases and grumpy teams. Nobody wants to have a grumpy team.
  2. In the cloud, nearly everything costs money. Resources that you deployed during tests that weren’t destroyed afterwards can add up to hefty surprises at the end of your billing cycle.
  3. Cookbook recipes and playbooks will need to account for these stale resources when executing their actions. This can lead to a more complicated codebase and a debt to pay back later on.

Provisioning tools such as Terraform, Cloudformation and Vagrant support rollback out of the box.

Use the right tools.

If you’re staring at a behemoth of a playbook for provisioning your stack or looking to make the move away from chef-provisioning, take a look at XebiaLabs awesome list of tools that make provisioning less complicated. CloudFormation is awesome at provisioning AWS infrastructure (unless you dislike JSON, in which case it is far from it), Vagrant is great at doing the same for physical infrastructure and Packer does a great job of building images as code.

Good luck!

About Me


I’m a DevOps consultant for ThoughtWorks, a software company striving for engineering excellence and a better world for our next generation of thinkers and leaders. I love everything DevOps, Windows, and Powershell, along with a bit of burgers, beer and plenty of travel. I’m on twitter @easiestnameever and LinkedIn at @carlosindfw.